If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2-6x-123=0
a = 2; b = -6; c = -123;
Δ = b2-4ac
Δ = -62-4·2·(-123)
Δ = 1020
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1020}=\sqrt{4*255}=\sqrt{4}*\sqrt{255}=2\sqrt{255}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-6)-2\sqrt{255}}{2*2}=\frac{6-2\sqrt{255}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-6)+2\sqrt{255}}{2*2}=\frac{6+2\sqrt{255}}{4} $
| 10x(8+x)=50 | | 0=-5x^2+7.5x+6 | | 31-5y=6 | | 9+x/6=4 | | 9x-7+15x-5=180 | | 5x/3-x=14 | | z+41/7=9 | | 0=-5x^2+8x+3 | | 5y-8=32. | | 36+u=67(7-u)+u | | x×(126-x)=3393 | | 21-2b=11 | | 3(x=1)-2x=x+3 | | 10-4g=34 | | 4x+x=12*5 | | 2x-48=2 | | y/4+4=7 | | 2x-4x(1+2)=20 | | 12x-9=25-x | | 3–(x–1)=–1–(5–x) | | 12=12y+5y-3y | | 54=z/5+48 | | y=7.50+45 | | 5(2x+1)+7(4x=2)=0 | | a+2/5=-19 | | 4+x(x)=12*5 | | 3(x-5)=22(x-11) | | 4+x(x)=12*(5) | | 25y+12=-13 | | (x-6)÷4-(x-4)÷6=1-x÷10 | | (2y)^2+(4y)^2+(10y)^2=0 | | 6+4v=10 |